ENG

Использование генетического алгоритма для поиска закона управления развертыванием троса в задаче доставки груза с орбиты


Ледков А.С. "Использование генетического алгоритма для поиска закона управления развертыванием троса в задаче доставки груза с орбиты," Интернет-журнал «Науковедение», 2014, № 5(24), С. 1-12.

Download PDF Внешний файл


Аннотация

Доставка грузов с орбита является заключительным этапом большого количества космических программ. Сегодня для ее решения применяются спускаемые капсулы, которые переводятся на орбиты спуска с помощью реактивных двигателей. Альтернативным способом решения этой задачи является использование космических тросовых систем, не требующих затрат топлива. Одним из ключевых вопросов проектирования таких систем является поиск оптимальных законов развертывания троса. В статье проводится сравнение существующих схем развертывания. Для случая круговой орбиты получена приближенная аналитическая формула, позволяющая оценить во сколько раз длина троса при статическом развертывании превышает длину троса при динамическом развертывании при условии перехода груза на орбиты с одинаковым радиусом перигея. На основе анализа сил, действующих на груз в процессе маневра, предложена модификация динамической схемы с целью уменьшения высоты перигея орбиты груза. Для подтверждения эффективности предложенной схемы разработан генетический алгоритм поиска оптимального закона управления силой натяжения троса. В качестве критерия оптимальности выбрано расстояние до перигея орбиты груза. Для космической тросовой системы с параметрами, соответствующими эксперименту YES2, найдено оптимальное управление и установлено, что для спуска с орбиты нужен трос длиной 13.1 км при максимально допустимой относительной скорости троса 90 м/с. Для перевода груза на орбиту спуска с таким же перигеем в случае динамического развертывания требуется трос длиной 30 км, а при статическом - 44.6 км. Полученные результаты могут быть использованы при проектировании новых космических транспортных систем, включающих в себя тросы переменной длины.



Яндекс.Метрика

© 2016 - Alexander Ledkov. All rights reserved.